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Abstract

Let X be a d-dimensional simplicial complex with N faces of di-
mension (d − 1). Suppose that any (d − 1)-face of X is contained in
at least k ≥ d + 2 faces of X of dimension d. Extending the classical
Moore bound for graphs, it is shown that X must contain a ball B of
radius at most dlogk−d Ne such that Hd(B; R) 6= 0. The Ramanujan
Complexes constructed by Lubotzky, Samuels and Vishne are used to
show that this upper bound on the radius of B cannot be improved
by more then a multiplicative constant factor.

1 Introduction

Let G = (V, E) be a graph on n vertices. Let δ(G) denote the minimal
degree in G and let g(G) = g denote the minimal length of a cycle in G.
An easy counting argument (see e.g. Theorem IV.1 in [2]) shows that if
δ(G) = k ≥ 3 then

n ≥

{
1 + k

k−2
((k − 1)

g−1
2 − 1) g odd

2
k−2

((k − 1)
g
2 − 1) g even .

(1)
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This implies the classical Moore bound

Theorem A. g(G) < 2 logk−1 n + 2.

Let dG(u, v) be the distance between the vertices u and v in the graph
metric and let Br(v) = {u ∈ V : dG(u, v) ≤ r} denote the ball of radius
r around v. Define the acyclicity radius rv(G) of G at the vertex v to be
the maximal r such that the induced graph G[Br(v)] is acyclic. Let r(G) =

minv∈V rv(G), then r(G) = bg(G)
2
c − 1. The asymptotic version of Moore’s

bound is equivalent to the following

Theorem A1. If δ(G) = k ≥ 3 then for every v ∈ V

rv(G) ≤ blogk−1 nc . (2)

The best lower bound for the girth of k-regular graphs is given by the
Ramanujan graphs of Lubotzky, Phillips and Sarnak [6]. For a fixed prime
p, the construction in [6] provides a sequence of (p + 1)-regular graphs Gi =
(Vi, Ei) with |Vi| → ∞ such that g(Gi) ≥ 4

3
logp |Vi| −O(1). A similar result

was obtained by Morgenstern [9] for any prime power q. In terms of the
acyclicity radius we therefore have:

Theorem B1. For every prime power q, there exists a sequence of (q + 1)-
regular graphs Gi = (Vi, Ei) with |Vi| → ∞ such that for every v ∈ V

rv(Gi) ≥
2

3
logq |Vi| −O(1) .

In this note we extend Theorems A1 and B1 to higher dimensional simpli-
cial complexes. Let X be a d-dimensional simplicial complex on the vertex
set V . Let Hi(X) denote the i-dimensional homology group of X with some
fixed field coefficients. For 0 ≤ i ≤ d let X(i) = {σ ∈ X : dim σ = i} and let
fi(X) = |X(i)|. For a subset of vertices S ⊂ V let X[S] denote the induced
subcomplex on S. The degree of a (d− 1)-simplex σ ∈ X(d− 1) is

deg(σ) = |{τ ∈ X(d) : σ ⊂ τ}| .

Let δ(X) = min{deg(σ) : σ ∈ X(d− 1)} . A complex X is called k-regular if
deg(σ) = δ(X) = k for every σ ∈ X(d−1). Denote by Br(v) the ball of radius
r around v with respect to the graph metric on the 1-dimensional skeleton of
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X. Extending the notion of acyclicity radius to the higher dimensional setting
we define rv(X) as the maximal r such that Hd(X[Br(v)]) = 0, and r(X) =
minv∈V rv(X). The following result extends Theorem A1 to d-dimensional
complexes.

Theorem Ad. Let X be a d-dimensional complex with δ(X) = k ≥ d + 2.
Then for any vertex v ∈ V which is contained in some (d− 1)-face

rv(X) ≤ blogk−d fd−1(X)c .

For the lower bound, we use the Ramanujan Complexes presented by
Lubotzky, Samuels and Vishne in [8] to show:

Theorem Bd. For d ≥ 1 and q a prime power, there exists a sequence of
d-dimensional (q + 1)-regular complexes Xi on vertex sets Vi with |Vi| → ∞,
such that for any v ∈ V

rv(Xi) ≥
logq |Vi|

2d2(d + 2)
− 1 .

Theorem Ad is proved in Section 2, while Theorem Bd is established in
Section 3. Note that Theorem Ad reduces to Theorem A1 when d = 1. On
the other hand, specializing theorem Bd for the case d = 1, yields a somewhat
weaker version of Theorem B1 (The constant is 1

6
rather then 2

3
). In Section

4 we discuss some open problems and suggestions for further research. One
such challenge is to improve the constant in Theorem Bd.

2 The Upper Bound

Proof of Theorem Ad: First note that if Y is a d-dimensional complex
such that fd(Y ) > fd−1(Y ) , then Hd(Y ) 6= 0. Indeed, let Ci(Y ) denote the
space of simplicial i-chains of Y . Then dim Cd(Y ) = fd(Y ) > fd−1(Y ) =
dim Cd−1(Y ) implies that the boundary map ∂ : Cd(Y ) → Cd−1(Y ) has a
non-trivial kernel.
Let v be a vertex which is contained in a (d− 1)-simplex. Abbreviate Bt =
Bt(v) and write α(t) = fd−1(X[Bt]) , β(t) = fd(X[Bt]). Let

γ(t) = |{(σ, τ) : σ ∈ X[Bt](d− 1) , τ ∈ X(d) , σ ⊂ τ}| .
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Then

γ(t) =
∑

σ∈X[Bt](d−1)

deg(σ) ≥ fd−1(X[Bt]) · δ(X) ≥ α(t) · k . (3)

For a d-simplex τ ∈ X(d) let s(τ) denote the number of (d− 1)-simplices in
X[Bt] that are contained in τ . Then

s(τ) =

{
d + 1 τ ∈ X[Bt]
0 τ 6∈ X[Bt+1]

and s(τ) ≤ 1 if τ ∈ X[Bt+1]−X[Bt]. Thus

γ(t) =
∑

τ∈X(d)

s(τ) ≤ (d + 1)β(t) + (β(t + 1)− β(t)) =

dβ(t) + β(t + 1) . (4)

Let m = rv(X). Combining (3) and (4) we obtain that for all t < m

kα(t) ≤ dβ(t) + β(t + 1) ≤ dα(t) + α(t + 1) .

Hence
α(t + 1) ≥ (k − d)α(t) ≥ · · · ≥ (k − d)tα(1) .

Since v is contained in a (d− 1)-face, it follows that α(1) ≥ kd + 1. Thus

(kd + 1)(k − d)m−1 ≤ α(m) ≤ fd−1(X)

and m ≤ blogk−d fd−1(X)c.

2

3 The Lower Bound

The proof of Theorem Bd depends on certain finite quotients of affine
buildings constructed by Lubotzky, Samuels and Vishne [8], based on the
Cartwright-Steger group [4] (see also [11] for a similar construction, as well
as [3, 5, 7] for related results). In Section 3.1 we recall the definition and
some properties of affine buildings of type Ãd−1. In Section 3.2 we describe
the relevant finite quotients and show that they have a large acyclicity radius.
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3.1 Affine Buildings of Type Ãd−1

Let F be a local field with a valuation ν : F → Z and a uniformizer π. Let
O denote the ring of integers of F and O/πO = Fq be the residue field. A
lattice L in the vector space V = F d is a finitely generated O-submodule of
V such that L contains a basis of V . Two lattices L1 and L2 are equivalent
if L1 = λL2 for some 0 6= λ ∈ F . Let [L] denote the equivalence class of
a lattice L. Two distinct equivalence classes [L1] and [L2] are adjacent if
there exist representatives L′

1 ∈ [L1] , L′
2 ∈ [L2] such that πL′

1 ⊂ L′
2 ⊂ L′

1.
The affine building of type Ãd−1 associated with F is the simplicial complex
B = Bd(F ) whose vertex set B0 is the set of equivalence classes of lattices
in V , and whose simplices are the subsets {[L0], . . . , [Lk]} such that all pairs
[Li], [Lj] are adjacent. It can be shown that {[L0], . . . , [Lk]} forms a simplex
iff there exist representatives L′

i ∈ [Li] such that

πL′
k ⊂ L′

0 ⊂ · · · ⊂ L′
k . (5)

It is well known that B is a contractible (d−1)-dimensional simplicial complex
and that the link of each vertex is isomorphic to the order complex Ad−1(Fq)
of all non-trivial proper linear subspaces of Fd

q (see e.g. [10, 7]). This implies
that δ(B) = q + 1.

The type function τ : B0 → Zd is defined as follows. Let Od be the
standard lattice in V . For any lattice L, there exists g ∈ GL(V ) such that L =
gOd. Define τ([L]) = ν(det(g)) (mod d). Let dist([L], [L′]) denote the graph
distance between [L], [L′] ∈ B0 in the 1-skeleton of B. Let dist1([L], [L′])
denote the minimal t for which there exist [L] = [L0], . . . , [Lt] = [L′] such
that [Li] and [Li+1] are adjacent in B and τ([Li+1]) − τ([Li]) = 1 for all
0 ≤ i ≤ t− 1.

Claim 3.1. For two lattices L1, L2

dist1([L1], [L2]) ≤ (d− 1)dist([L1], [L2]) . (6)

Proof: This follows directly from (5). Alternatively, let v1, . . . , vd be a
basis of V and let a1, . . . , ad be integers such that L1 = ⊕d

i=1Ovi and L2 =
⊕d

i=1π
aiOvi. Then

dist([L1], [L2]) = max
i

ai −min
i

ai (7)
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and

dist1([L1], [L2]) =
d∑

i=1

ai − d min
i

ai . (8)

Now (6) follows from (7) and (8).

2

3.2 Finite Quotients of Affine Buildings

Let q be a prime power and let F be the local field Fq((y)) with local
ring O = Fq[[y]]. The construction of finite quotients of B = Bd(F ) in [8],
depends on the remarkable Cartwright-Steger group Γ < PGLd(F ) (see [4]).
We briefly recall the construction of Γ and some of its properties.

Let φ : Fqd → Fqd denote the Frobenius automorphism. Extend φ to
Fqd(y) by defining φ(y) = y. Then φ is a generator of the cyclic Galois
group Gal(Fqd(y)/Fq(y)). Let D be the d2-dimensional Fq(y)-algebra given
by D = Fqd [σ] with the relations σa = φ(a)σ for all a ∈ Fqd(y), and σd = 1+y.
D is a division algebra that splits over the extension field F = Fq((y)). Denote
D(F ) = D⊗F , then there is an isomorphism D(F ) ∼= Md(F ) which in turn
induces an isomorphism

D(F )×/Z(D(F )×) ∼= PGLd(F ) . (9)

Let b1 = 1 − σ−1 ∈ D×, and for u ∈ F∗
qd let bu = u−1b1u. Let gu ∈

D(F )×/Z(D(F )×) denote the image of bu under the quotient map. The
Cartwright-Steger group Γ is the subgroup of D(F )×/Z(D(F )×) generated
by {gu : u ∈ F∗

qd}. Utilizing the isomorphism (9), we also regard Γ as a

subgroup of PGLd(F ). We shall use the following properties of Γ.

Theorem 3.2. (Cartwright and Steger [4])

a) Γ acts simply transitively on the vertices of B.

b) Let L0 = Od. Then for g ∈ Γ

dist1(g[L0], [L0]) = min{t : g = gu1 · · · gut for some u1, . . . , ut ∈ F∗qd}.
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2

The action of D upon itself by conjugation gives rise to a representation

ρ : D(F )× → GLd2(F )

which factors through D(F )×/Z(D(F )×). Let ξ0, . . . , ξd−1 be a normal basis
of Fqd over Fq, then {ξiσ

j}d−1
i,j=0 is a basis of D(F ) over F . An explicit compu-

tation (see Eq. (9) on page 975 in [8]) shows that with respect to this basis,
ρ(bu) is a d2 × d2 matrix whose entries are linear polynomials in 1

y
over Fq.

Let h(λ) ∈ Fq[λ] be an irreducible polynomial which is prime to λ(1+λ), and
let f = h( 1

y
) ∈ R0 = Fq[

1
y
] and I = fR0. Write 1d2 for the d2 × d2 identity

matrix. Let
Γ(I) = { γ ∈ Γ : ρ(γ) ≡ 1d2(mod f) } .

This subgroup coincides with the congruence subgroup Γ(I) as defined in
Eq. (15) on p.979 in [8]. In particular Γ/Γ(I) is isomorphic to a subgroup
of PGLd(R0/fR0). Let BI = Γ(I)\B denote the resulting quotient complex.
The vertex set B0

I of BI is the set of orbits of B0 under Γ(I), i.e.

B0
I = { Γ(I)[L] : [L] ∈ B0 } .

A subset {Γ(I)[L0], . . . , Γ(I)[Lk]} forms a simplex in BI iff there exist g0, . . . , gk ∈
Γ(I) such that {g0[L0], . . . , gk[Lk]} is a simplex in B.
Note that

|B0
I | = (Γ : Γ(I)) ≤ |PGLd(R0/fR0)| .

Let L be a lattice, and let

`I = min{ dist([L], g[L]) : 1 6= g ∈ Γ(I) } .

Clearly `I is independent of L since Γ is transitive and Γ(I) / Γ.

Proposition 3.3.

`I ≥
logq |B0

I |
(d− 1)(d2 − 1)

. (10)

Proof: Let t = dist1(g[L0], [L0]). By Theorem 3.2b) there exist u1, . . . , ut ∈
F∗

qd such that g = gu1 · · · gut . Let C = (cij) = ρ(bu1) · · · ρ(but). The cij’s

are polynomials in Fq[
1
y
] of degree at most t in 1

y
. By assumption g ∈ Γ(I),
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hence C = 1d2 + fE for some E ∈ Md2(R0). If cij 6= 0 for some i 6= j, then
t ≥ deg1/y(cij) ≥ deg1/y(f). Otherwise C is a diagonal matrix. If it is a
scalar matrix, then it must be the identity as Γ, being a lattice in PGLd(F ),
has trivial center. Thus we can assume C is diagonal and non-scalar. Choose
i, j such that cii 6= cjj, then t ≥ deg1/y(cii − cjj) ≥ deg1/y(f). Thus, by (6)

dist([L0], g[L0]) ≥
1

d− 1
dist1(g[L], [L]) ≥

deg1/y(f)

(d− 1)
≥

logq |PGLd(R0/fR0)|
(d− 1)(d2 − 1)

≥

logq |B0
I |

(d− 1)(d2 − 1)
.

2

Proof of Theorem Bd−1: Choose a sequence of irreducible polynomials
hi(λ) ∈ Fq[λ] such that (hi, λ(1 + λ) = 1 and deg hi →∞. Let Ii = hi(

1
y
)R0

and let Xi = BIi
. The quotient map B → Xi is clearly an isomorphism on

balls of radius at most
`Ii

2
− 1 in B. Since B is contractible, it follows from

Proposition 3.3 that for any vertex v ∈ X0
i

rv(Xi) ≥
`Ii

2
− 1 ≥

logq |X0
i |

2(d− 1)(d2 − 1)
− 1 .

We complete the proof by noting that if i is sufficiently large then `Ii
≥ 4,

hence Xi is (d− 1)-dimensional and δ(Xi) = δ(B) = q + 1.

2

4 Concluding Remarks

We proved a higher dimensional extension of the Moore bound, and showed
that the Ramanujan Complexes constructed in [8] imply that this bound is
tight up to a multiplicative factor. We mention several problems that arise
from these results.
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1. In Section 3.2 it is shown that for appropriately chosen ideals Ii /Fq[
1
y
],

the (d− 1)-dimensional quotient complexes Xi = BIi
satisfy

rv(Xi) ≥ C(d− 1) logq |X0
i | − 1

with C(d− 1) = 1
2(d−1)(d2−1)

. It seems likely that a more careful choice

of the Ii’s will lead to an improved bound on the constant. (Recall that
in the 1-dimensional case, Ramanujan graphs [6] give the constant 2

3
,

while C(1) = 1
6
).

2. While the construction of Ramanujan Graphs and the proof of Theorem
B1 depend on number theoretic tools, there is an elementary (but non-
constructive) argument due to Erdős and Sachs (see e.g. Theorem
III.1.4 in [1]) that shows the existence of a sequence of k-regular graphs
Gi = (Vi, Ei) with |Vi| → ∞ such that r(Gi) ≥ 1

2
logk−1 |Vi| − O(1). It

would be interesting to obtain a similar result in the higher dimensional
setting.
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