A Moore Bound for Simplicial Complexes

Alexander Lubotzky^{*} Roy Meshulam[†]

Abstract

Let X be a d-dimensional simplicial complex with N faces of dimension (d-1). Suppose that any (d-1)-face of X is contained in at least $k \ge d+2$ faces of X of dimension d. Extending the classical Moore bound for graphs, it is shown that X must contain a ball B of radius at most $\lceil \log_{k-d} N \rceil$ such that $H_d(B; \mathbb{R}) \ne 0$. The Ramanujan Complexes constructed by Lubotzky, Samuels and Vishne are used to show that this upper bound on the radius of B cannot be improved by more then a multiplicative constant factor.

1 Introduction

Let G = (V, E) be a graph on *n* vertices. Let $\delta(G)$ denote the minimal degree in *G* and let g(G) = g denote the minimal length of a cycle in *G*. An easy counting argument (see e.g. Theorem IV.1 in [2]) shows that if $\delta(G) = k \ge 3$ then

$$n \ge \begin{cases} 1 + \frac{k}{k-2}((k-1)^{\frac{g-1}{2}} - 1) & g \text{ odd} \\ \frac{2}{k-2}((k-1)^{\frac{g}{2}} - 1) & g \text{ even} \end{cases}$$
(1)

Math Subject Classification. 52A35, 13F55.

Keywords and Phrases. Girth, Simplicial Homology, Ramanujan Graphs

^{*}Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel, and Institute for Advanced Study, Princeton, NJ 08540. e-mail: alexlub@math.huji.ac.il . Research supported by the Ambrose Monell Foundation and the Ellentuck Fund.

[†]Department of Mathematics, Technion, Haifa 32000, Israel, and Institute for Advanced Study, Princeton, NJ 08540. e-mail: meshulam@math.technion.ac.il . Research supported by a State of New Jersey grant.

This implies the classical Moore bound

Theorem A. $g(G) < 2 \log_{k-1} n + 2$.

Let $d_G(u, v)$ be the distance between the vertices u and v in the graph metric and let $B_r(v) = \{u \in V : d_G(u, v) \leq r\}$ denote the ball of radius r around v. Define the acyclicity radius $r_v(G)$ of G at the vertex v to be the maximal r such that the induced graph $G[B_r(v)]$ is acyclic. Let $r(G) = \min_{v \in V} r_v(G)$, then $r(G) = \lfloor \frac{g(G)}{2} \rfloor - 1$. The asymptotic version of Moore's bound is equivalent to the following

Theorem A₁. If $\delta(G) = k \ge 3$ then for every $v \in V$

$$r_v(G) \le \lfloor \log_{k-1} n \rfloor \quad . \tag{2}$$

The best lower bound for the girth of k-regular graphs is given by the Ramanujan graphs of Lubotzky, Phillips and Sarnak [6]. For a fixed prime p, the construction in [6] provides a sequence of (p + 1)-regular graphs $G_i = (V_i, E_i)$ with $|V_i| \to \infty$ such that $g(G_i) \ge \frac{4}{3} \log_p |V_i| - O(1)$. A similar result was obtained by Morgenstern [9] for any prime power q. In terms of the acyclicity radius we therefore have:

Theorem B₁. For every prime power q, there exists a sequence of (q + 1)-regular graphs $G_i = (V_i, E_i)$ with $|V_i| \to \infty$ such that for every $v \in V$

$$r_v(G_i) \ge \frac{2}{3}\log_q |V_i| - O(1)$$

In this note we extend Theorems A₁ and B₁ to higher dimensional simplicial complexes. Let X be a d-dimensional simplicial complex on the vertex set V. Let $H_i(X)$ denote the *i*-dimensional homology group of X with some fixed field coefficients. For $0 \le i \le d$ let $X(i) = \{\sigma \in X : \dim \sigma = i\}$ and let $f_i(X) = |X(i)|$. For a subset of vertices $S \subset V$ let X[S] denote the induced subcomplex on S. The *degree* of a (d-1)-simplex $\sigma \in X(d-1)$ is

$$\deg(\sigma) = |\{\tau \in X(d) : \sigma \subset \tau\}| \quad .$$

Let $\delta(X) = \min\{\deg(\sigma) : \sigma \in X(d-1)\}\)$. A complex X is called *k*-regular if $\deg(\sigma) = \delta(X) = k$ for every $\sigma \in X(d-1)$. Denote by $B_r(v)$ the ball of radius r around v with respect to the graph metric on the 1-dimensional skeleton of

X. Extending the notion of acyclicity radius to the higher dimensional setting we define $r_v(X)$ as the maximal r such that $H_d(X[B_r(v)]) = 0$, and $r(X) = \min_{v \in V} r_v(X)$. The following result extends Theorem A₁ to *d*-dimensional complexes.

Theorem A_d. Let X be a d-dimensional complex with $\delta(X) = k \ge d + 2$. Then for any vertex $v \in V$ which is contained in some (d-1)-face

$$r_v(X) \leq \lfloor \log_{k-d} f_{d-1}(X) \rfloor$$
.

For the lower bound, we use the Ramanujan Complexes presented by Lubotzky, Samuels and Vishne in [8] to show:

Theorem B_d. For $d \ge 1$ and q a prime power, there exists a sequence of d-dimensional (q+1)-regular complexes X_i on vertex sets V_i with $|V_i| \to \infty$, such that for any $v \in V$

$$r_v(X_i) \ge \frac{\log_q |V_i|}{2d^2(d+2)} - 1$$

Theorem A_d is proved in Section 2, while Theorem B_d is established in Section 3. Note that Theorem A_d reduces to Theorem A_1 when d = 1. On the other hand, specializing theorem B_d for the case d = 1, yields a somewhat weaker version of Theorem B_1 (The constant is $\frac{1}{6}$ rather then $\frac{2}{3}$). In Section 4 we discuss some open problems and suggestions for further research. One such challenge is to improve the constant in Theorem B_d .

2 The Upper Bound

Proof of Theorem A_d: First note that if Y is a d-dimensional complex such that $f_d(Y) > f_{d-1}(Y)$, then $H_d(Y) \neq 0$. Indeed, let $C_i(Y)$ denote the space of simplicial *i*-chains of Y. Then dim $C_d(Y) = f_d(Y) > f_{d-1}(Y) =$ dim $C_{d-1}(Y)$ implies that the boundary map $\partial : C_d(Y) \to C_{d-1}(Y)$ has a non-trivial kernel.

Let v be a vertex which is contained in a (d-1)-simplex. Abbreviate $B_t = B_t(v)$ and write $\alpha(t) = f_{d-1}(X[B_t])$, $\beta(t) = f_d(X[B_t])$. Let

$$\gamma(t) = |\{(\sigma, \tau) : \sigma \in X[B_t](d-1), \tau \in X(d), \sigma \subset \tau\}|$$

Then

$$\gamma(t) = \sum_{\sigma \in X[B_t](d-1)} \deg(\sigma) \ge f_{d-1}(X[B_t]) \cdot \delta(X) \ge \alpha(t) \cdot k .$$
(3)

For a d-simplex $\tau \in X(d)$ let $s(\tau)$ denote the number of (d-1)-simplices in $X[B_t]$ that are contained in τ . Then

$$s(\tau) = \begin{cases} d+1 & \tau \in X[B_t] \\ 0 & \tau \notin X[B_{t+1}] \end{cases}$$

and $s(\tau) \leq 1$ if $\tau \in X[B_{t+1}] - X[B_t]$. Thus

$$\gamma(t) = \sum_{\tau \in X(d)} s(\tau) \le (d+1)\beta(t) + (\beta(t+1) - \beta(t)) = d\beta(t) + \beta(t+1) \quad .$$

$$(4)$$

Let $m = r_v(X)$. Combining (3) and (4) we obtain that for all t < m

$$k\alpha(t) \le d\beta(t) + \beta(t+1) \le d\alpha(t) + \alpha(t+1)$$
.

Hence

$$\alpha(t+1) \ge (k-d)\alpha(t) \ge \cdots \ge (k-d)^t \alpha(1) \; .$$

Since v is contained in a (d-1)-face, it follows that $\alpha(1) \ge kd + 1$. Thus

$$(kd+1)(k-d)^{m-1} \le \alpha(m) \le f_{d-1}(X)$$

and $m \leq \lfloor \log_{k-d} f_{d-1}(X) \rfloor$.

3 The Lower Bound

The proof of Theorem B_d depends on certain finite quotients of affine buildings constructed by Lubotzky, Samuels and Vishne [8], based on the Cartwright-Steger group [4] (see also [11] for a similar construction, as well as [3, 5, 7] for related results). In Section 3.1 we recall the definition and some properties of affine buildings of type \tilde{A}_{d-1} . In Section 3.2 we describe the relevant finite quotients and show that they have a large acyclicity radius.

3.1 Affine Buildings of Type \hat{A}_{d-1}

Let F be a local field with a valuation $\nu : F \to \mathbb{Z}$ and a uniformizer π . Let \mathcal{O} denote the ring of integers of F and $\mathcal{O}/\pi\mathcal{O} = \mathbb{F}_q$ be the residue field. A *lattice* L in the vector space $V = F^d$ is a finitely generated \mathcal{O} -submodule of V such that L contains a basis of V. Two lattices L_1 and L_2 are *equivalent* if $L_1 = \lambda L_2$ for some $0 \neq \lambda \in F$. Let [L] denote the equivalence class of a lattice L. Two distinct equivalence classes $[L_1]$ and $[L_2]$ are *adjacent* if there exist representatives $L'_1 \in [L_1]$, $L'_2 \in [L_2]$ such that $\pi L'_1 \subset L'_2 \subset L'_1$. The affine building of type \tilde{A}_{d-1} associated with F is the simplicial complex $\mathcal{B} = \mathcal{B}_d(F)$ whose vertex set \mathcal{B}^0 is the set of equivalence classes of lattices in V, and whose simplices are the subsets $\{[L_0], \ldots, [L_k]\}$ such that all pairs $[L_i], [L_j]$ are adjacent. It can be shown that $\{[L_0], \ldots, [L_k]\}$ forms a simplex iff there exist representatives $L'_i \in [L_i]$ such that

$$\pi L'_k \subset L'_0 \subset \dots \subset L'_k \quad . \tag{5}$$

It is well known that \mathcal{B} is a contractible (d-1)-dimensional simplicial complex and that the link of each vertex is isomorphic to the order complex $A_{d-1}(\mathbb{F}_q)$ of all non-trivial proper linear subspaces of \mathbb{F}_q^d (see e.g. [10, 7]). This implies that $\delta(\mathcal{B}) = q + 1$.

The type function $\tau : \mathcal{B}^0 \to \mathbb{Z}_d$ is defined as follows. Let \mathcal{O}^d be the standard lattice in V. For any lattice L, there exists $g \in \mathrm{GL}(V)$ such that $L = g\mathcal{O}^d$. Define $\tau([L]) = \nu(\det(g)) \pmod{d}$. Let $\operatorname{dist}([L], [L'])$ denote the graph distance between $[L], [L'] \in \mathcal{B}^0$ in the 1-skeleton of \mathcal{B} . Let $\operatorname{dist}_1([L], [L'])$ denote the minimal t for which there exist $[L] = [L_0], \ldots, [L_t] = [L']$ such that $[L_i]$ and $[L_{i+1}]$ are adjacent in \mathcal{B} and $\tau([L_{i+1}]) - \tau([L_i]) = 1$ for all $0 \leq i \leq t-1$.

Claim 3.1. For two lattices L_1, L_2

$$dist_1([L_1], [L_2]) \le (d-1)dist([L_1], [L_2]) \quad . \tag{6}$$

Proof: This follows directly from (5). Alternatively, let v_1, \ldots, v_d be a basis of V and let a_1, \ldots, a_d be integers such that $L_1 = \bigoplus_{i=1}^d \mathcal{O}v_i$ and $L_2 = \bigoplus_{i=1}^d \pi^{a_i} \mathcal{O}v_i$. Then

$$\operatorname{dist}([L_1], [L_2]) = \max_i a_i - \min_i a_i \tag{7}$$

and

$$dist_1([L_1], [L_2]) = \sum_{i=1}^d a_i - d\min_i a_i \quad .$$
(8)

Now (6) follows from (7) and (8).

3.2 Finite Quotients of Affine Buildings

Let q be a prime power and let F be the local field $\mathbb{F}_q((y))$ with local ring $\mathcal{O} = \mathbb{F}_q[[y]]$. The construction of finite quotients of $\mathcal{B} = \mathcal{B}_d(F)$ in [8], depends on the remarkable Cartwright-Steger group $\Gamma < \mathrm{PGL}_d(F)$ (see [4]). We briefly recall the construction of Γ and some of its properties.

Let $\phi : \mathbb{F}_{q^d} \to \mathbb{F}_{q^d}$ denote the Frobenius automorphism. Extend ϕ to $\mathbb{F}_{q^d}(y)$ by defining $\phi(y) = y$. Then ϕ is a generator of the cyclic Galois group $\operatorname{Gal}(\mathbb{F}_{q^d}(y)/\mathbb{F}_q(y))$. Let \mathcal{D} be the d^2 -dimensional $\mathbb{F}_q(y)$ -algebra given by $\mathcal{D} = \mathbb{F}_{q^d}[\sigma]$ with the relations $\sigma a = \phi(a)\sigma$ for all $a \in \mathbb{F}_{q^d}(y)$, and $\sigma^d = 1+y$. \mathcal{D} is a division algebra that splits over the extension field $F = \mathbb{F}_q((y))$. Denote $\mathcal{D}(F) = \mathcal{D} \otimes F$, then there is an isomorphism $\mathcal{D}(F) \cong M_d(F)$ which in turn induces an isomorphism

$$\mathcal{D}(F)^{\times}/Z(\mathcal{D}(F)^{\times}) \cong \mathrm{PGL}_d(F)$$
 . (9)

Let $b_1 = 1 - \sigma^{-1} \in \mathcal{D}^{\times}$, and for $u \in \mathbb{F}_{q^d}^*$ let $b_u = u^{-1}b_1u$. Let $g_u \in \mathcal{D}(F)^{\times}/Z(\mathcal{D}(F)^{\times})$ denote the image of b_u under the quotient map. The Cartwright-Steger group Γ is the subgroup of $\mathcal{D}(F)^{\times}/Z(\mathcal{D}(F)^{\times})$ generated by $\{g_u : u \in \mathbb{F}_{q^d}^*\}$. Utilizing the isomorphism (9), we also regard Γ as a subgroup of $\mathrm{PGL}_d(F)$. We shall use the following properties of Γ .

Theorem 3.2. (Cartwright and Steger [4])

- a) Γ acts simply transitively on the vertices of \mathcal{B} .
- b) Let $L_0 = \mathcal{O}^d$. Then for $g \in \Gamma$

$$dist_1(g[L_0], [L_0]) = \min\{t : g = g_{u_1} \cdots g_{u_t} \text{ for some } u_1, \dots, u_t \in \mathbb{F}_{q^d}^*\}.$$

The action of \mathcal{D} upon itself by conjugation gives rise to a representation

$$\rho: \mathcal{D}(F)^{\times} \to \mathrm{GL}_{d^2}(F)$$

which factors through $\mathcal{D}(F)^{\times}/Z(\mathcal{D}(F)^{\times})$. Let ξ_0, \ldots, ξ_{d-1} be a normal basis of \mathbb{F}_{q^d} over \mathbb{F}_q , then $\{\xi_i \sigma^j\}_{i,j=0}^{d-1}$ is a basis of $\mathcal{D}(F)$ over F. An explicit computation (see Eq. (9) on page 975 in [8]) shows that with respect to this basis, $\rho(b_u)$ is a $d^2 \times d^2$ matrix whose entries are linear polynomials in $\frac{1}{y}$ over \mathbb{F}_q . Let $h(\lambda) \in \mathbb{F}_q[\lambda]$ be an irreducible polynomial which is prime to $\lambda(1+\lambda)$, and let $f = h(\frac{1}{y}) \in R_0 = \mathbb{F}_q[\frac{1}{y}]$ and $I = fR_0$. Write $\mathbf{1}_{d^2}$ for the $d^2 \times d^2$ identity matrix. Let

$$\Gamma(I) = \{ \gamma \in \Gamma : \rho(\gamma) \equiv \mathbf{1}_{d^2} (\text{mod } f) \}$$

This subgroup coincides with the congruence subgroup $\Gamma(I)$ as defined in Eq. (15) on p.979 in [8]. In particular $\Gamma/\Gamma(I)$ is isomorphic to a subgroup of $\mathrm{PGL}_d(R_0/fR_0)$. Let $\mathcal{B}_I = \Gamma(I)\setminus\mathcal{B}$ denote the resulting quotient complex. The vertex set \mathcal{B}_I^0 of \mathcal{B}_I is the set of orbits of \mathcal{B}^0 under $\Gamma(I)$, i.e.

$$\mathcal{B}_I^0 = \{ \Gamma(I)[L] : [L] \in \mathcal{B}^0 \} .$$

A subset $\{\Gamma(I)[L_0], \ldots, \Gamma(I)[L_k]\}$ forms a simplex in \mathcal{B}_I iff there exist $g_0, \ldots, g_k \in \Gamma(I)$ such that $\{g_0[L_0], \ldots, g_k[L_k]\}$ is a simplex in \mathcal{B} . Note that

$$|\mathcal{B}_I^0| = (\Gamma : \Gamma(I)) \le |\operatorname{PGL}_d(R_0/fR_0)|$$
.

Let L be a lattice, and let

$$\ell_I = \min\{ \operatorname{dist}([L], g[L]) : 1 \neq g \in \Gamma(I) \} .$$

Clearly ℓ_I is independent of L since Γ is transitive and $\Gamma(I) \triangleleft \Gamma$.

Proposition 3.3.

$$\ell_I \ge \frac{\log_q |\mathcal{B}_I^0|}{(d-1)(d^2 - 1)} \quad . \tag{10}$$

Proof: Let $t = \text{dist}_1(g[L_0], [L_0])$. By Theorem 3.2b) there exist $u_1, \ldots, u_t \in \mathbb{F}_{q^d}^*$ such that $g = g_{u_1} \cdots g_{u_t}$. Let $C = (c_{ij}) = \rho(b_{u_1}) \cdots \rho(b_{u_t})$. The c_{ij} 's are polynomials in $\mathbb{F}_q[\frac{1}{y}]$ of degree at most t in $\frac{1}{y}$. By assumption $g \in \Gamma(I)$,

hence $C = \mathbf{1}_{d^2} + fE$ for some $E \in M_{d^2}(R_0)$. If $c_{ij} \neq 0$ for some $i \neq j$, then $t \geq \deg_{1/y}(c_{ij}) \geq \deg_{1/y}(f)$. Otherwise C is a diagonal matrix. If it is a scalar matrix, then it must be the identity as Γ , being a lattice in $\mathrm{PGL}_d(F)$, has trivial center. Thus we can assume C is diagonal and non-scalar. Choose i, j such that $c_{ii} \neq c_{jj}$, then $t \geq \deg_{1/y}(c_{ii} - c_{jj}) \geq \deg_{1/y}(f)$. Thus, by (6)

$$dist([L_0], g[L_0]) \ge \frac{1}{d-1} dist_1(g[L], [L]) \ge \frac{\deg_{1/y}(f)}{(d-1)} \ge \frac{\log_q |PGL_d(R_0/fR_0)|}{(d-1)(d^2-1)} \ge \frac{\log_q |\mathcal{B}_I^0|}{(d-1)(d^2-1)} .$$

Proof of Theorem B_{d-1}: Choose a sequence of irreducible polynomials $h_i(\lambda) \in \mathbb{F}_q[\lambda]$ such that $(h_i, \lambda(1 + \lambda) = 1$ and deg $h_i \to \infty$. Let $I_i = h_i(\frac{1}{y})R_0$ and let $X_i = \mathcal{B}_{I_i}$. The quotient map $\mathcal{B} \to X_i$ is clearly an isomorphism on balls of radius at most $\frac{\ell_{I_i}}{2} - 1$ in \mathcal{B} . Since \mathcal{B} is contractible, it follows from Proposition 3.3 that for any vertex $v \in X_i^0$

$$r_v(X_i) \ge \frac{\ell_{I_i}}{2} - 1 \ge \frac{\log_q |X_i^0|}{2(d-1)(d^2 - 1)} - 1$$

We complete the proof by noting that if *i* is sufficiently large then $\ell_{I_i} \ge 4$, hence X_i is (d-1)-dimensional and $\delta(X_i) = \delta(\mathcal{B}) = q+1$.

4 Concluding Remarks

We proved a higher dimensional extension of the Moore bound, and showed that the Ramanujan Complexes constructed in [8] imply that this bound is tight up to a multiplicative factor. We mention several problems that arise from these results. 1. In Section 3.2 it is shown that for appropriately chosen ideals $I_i \triangleleft \mathbb{F}_q[\frac{1}{y}]$, the (d-1)-dimensional quotient complexes $X_i = \mathcal{B}_{I_i}$ satisfy

$$r_v(X_i) \ge C(d-1)\log_q |X_i^0| - 1$$

with $C(d-1) = \frac{1}{2(d-1)(d^2-1)}$. It seems likely that a more careful choice of the I_i 's will lead to an improved bound on the constant. (Recall that in the 1-dimensional case, Ramanujan graphs [6] give the constant $\frac{2}{3}$, while $C(1) = \frac{1}{6}$).

2. While the construction of Ramanujan Graphs and the proof of Theorem B_1 depend on number theoretic tools, there is an elementary (but nonconstructive) argument due to Erdős and Sachs (see e.g. Theorem III.1.4 in [1]) that shows the existence of a sequence of k-regular graphs $G_i = (V_i, E_i)$ with $|V_i| \to \infty$ such that $r(G_i) \ge \frac{1}{2} \log_{k-1} |V_i| - O(1)$. It would be interesting to obtain a similar result in the higher dimensional setting.

References

- [1] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.
- [2] B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, Springer Verlag, New York, 1998.
- [3] D. Cartwright, P. Solé, A. Zuk, Ramanujan geometries of type A_n . Discrete Math. **269** (2003), 35–43.
- [4] D. Cartwright and T. Steger, A family of \tilde{A}_n -groups, Israel J. Math. **103**(1998), 125–140.
- [5] W.-C. W. Li, Ramanujan hypergraphs, *Geom. Funct. Anal.* 14 (2004), 380–399.
- [6] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan Graphs, *Combinatorica* 8(1988) 261-277.
- [7] A. Lubotzky, B. Samuels, U. Vishne, Ramanujan complexes of type A_d , *Israel J. Math*, to appear.

- [8] A. Lubotzky, B. Samuels, U. Vishne, Explicit constructions of Ramanujan complexes of type A_d, European J. Combin. 26 (2005) 965–993.
- [9] M. Morgenstern, Existence and explicit constructions of q + 1 regular Ramanujan graphs for every prime power q, J. Combin. Theory Ser. B **62** (1994) 44–62.
- [10] M. Ronan, Lectures on Buildings, Perspectives in Mathematics Vol. 7, Academic Press, London 1989.
- [11] A. Sarveniazi, Ramanujan $(n_1, n_2, \ldots, n_{d-1})$ -regular hypergraphs based on Bruhat-Tits buildings of type \tilde{A}_{d-1} , arxiv.org/math.NT/0401181.